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The growing interest in composites structures triggered a development in composites manufacturing technologies and methods
up to the present day, whose momentum is certain to be carried into the future. Particularly, in the aerospace industry, composites
have become the predominantly used material given its many advantages over traditional metallic materials. However, because of
the sector´s economic competitiveness, manufacturers have to better deal with cost requirements.

This research describes the capture and reuse of rich historic process data, over multiple aircraft programs, to develop an
approach capable of generating good cost estimations of new components in a preliminary design stage. The collected samples
populate a series of tecno-economic relations, developed to estimate manufacturing process parameters and requirements, based on
a set of components’ geometric properties. In turn, these methods are integrated into a process-based cost model, that translates
the generated process information into the final manufacturing cost assessment. Additionally, the traditional deterministic approach
to cost modelling is replaced in favour of developed stochastic methods that inherit process uncertainties. By doing so, a broader
view of expected costs is provided, which reflects existing process variabilities.

Results obtained in this approach indicate close agreement with the manufacturer cost assessments (MAPE=16.4%, NRMSE=5.1%),
validating the applicability of the developed cost tool in estimating projects’ manufacturing costs. Ultimately, the tool provides a
solution to the lack of readily available cost assessments prior to process industrialization and may help designers to overcome the
challenge of evaluating design and process decision consequences on final product cost.

Index Terms—Composites, PBCM, Aeronautics, Cost Modelling

1 INTRODUCTION

Since the 1990s [1] Carbon Fiber Reinforced Polymers
(CFRP), have been gaining increased interest from aerospace
manufacturers. The switch from predominately aluminium
to predominantly composite structures enables lighter and
more fatigue resistance components to be obtained, promoting
reductions in aircraft fuel consumption and maintenance costs.
With this growing appeal, improvements have been made not
only in developing materials with better mechanical properties
but also in the technologies and methods that process and
shape these materials into working structures [1]. Reliability
and consistency of composites manufacturing processes have
historically been of key importance, as an efficient use of these
expensive materials can single-handedly improve production
returns and ensure the economic competitiveness of the man-
ufacturer. In many regards, this has only become possible with
the recent automation of layup processes such as Automated
Tape Laying (ATL) and Automated Fibre Placement (AFP),
that significantly increased the rate and consistency to which
the material is placed when compared to the more traditional
method of manual layup [2]. However, with newer and differ-
ent technologies arises new technical challenges, to which en-
gineers must adapt their designs (Design for Manufacturing),
while at the same time trying to make conscious decisions in
order to achieve management imposed cost targets (Design to
Cost). Pressured by the economic competitiveness that must
be achieved, a lot of effort is put into the early stages of
product development since a major part of the program costs
are decided during this phase [3] and, once production takes
place, excessive manufacturing costs are often irreversible [4].

Therefore, it is of the utmost importance to provide tools that
allow designers and cost engineers to perform meaningful, yet
reasonably fast cost assessments during design and process
iterations, in order to evaluate its economic viability, and
ensure project profitability.

Many studies offer different approaches and solutions to
the cost assessment problem [5], concluding that costs can be
modelled and integrated into the engineering design process,
becoming a key design variable. Within this study, we focus
on developing multiple methods that capture a series of
manufacturing cost drivers based on component geometric
attributes, which are embedded into an existing process-based
cost model (PBCM) [6]. The goal is to further improve its
existing capabilities while at the same time addressing some
of the limitations currently upheld by not only this but most
of the current cost modelling techniques:

• The inability to perform accurate cost estimations at a
conceptual design phase due to the limited data that is
available [7].

• Time consuming and labour intensive tasks; A significant
amount of data often needs to be manually imported and
the knowledge and expertise to perform these calculations
is typically not available to the designer, but rather to the
cost engineers [8].

• Process uncertainty and variability, which is often dis-
regarded from the cost estimation, despite its impact on
overall manufacturing costs.

Ultimately, the goal of this work is to address these short-
comings, and provide an analytical tool that can help engineers
to better understand - during the design process and early
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Fig. 1: Composite part manufacturing process flowchart.

stages of process industrialization - possible manufacturing
costs, in order do weight on the economic viability of changes
to the manufacturing process in a more streamlined way.

2 DATA AND METHODS

Understanding the dynamics of the manufacturing processes
allows for the underlining of the relevant cost origins, and
ensures the correct development of suitable cost assessment
methods that determine the final component cost. Typically,
composite layup manufacturing processes (Fig. 1) start with
the removal of the pre-impregnated composite fibers materials
– hence the name prepreg – from the freezers where they are
stored to avoid material deterioration.

After a 24-hour period of material stabilization at room
temperature, the materials are cut by automated equipment
into the required shape and sizes for the intended compo-
nent. Afterwards, the mold is cleaned and prepared for the
manual application of the previously cut materials along the
appropriate orientations and positions. This initial deposition
is followed by the vacuum bagging of the mold surface, in
order to remove voids and consolidate the layers. Next, comes
the automatic layup of material, that can be performed either
by ATL or AFP, depending on the component’s geometry.
Planar surfaces are predominantly laminated using ATL while
more complex and curved geometries require the improved
deposition control and flexibility of AFP. Once this process
is finished there is a minor manual layup of materials, the
laminate is vacuum bagged, and taken into the autoclave where
the prepreg materials are cured by undergoing a heat and
pressure cycle. The part is then demolded and trimmed to
its final shape using CNC equipment, followed by some light
manual finishes to remove any residual burs. The last step of
any process is non-destructive ultrasound testing (NDT), where
the surface of the part is scanned and analysed to detect any
non-conformity that could compromise its structural integrity,
such as voids, wrinkles or delaminations.

Depending on the component, there could be additional
operational blocks, where activities are performed in tandem
to the main manufacturing flow. These parallel operations
are typically associated with more complex manufacturing
methods that feature reinforcements integration, such as
stringers, trough co-curing processes. In turn, these processes
require a wider range of supporting technologies, in particular
Hot-Drape Forming (HDF), that preforms flat laminates into

the initial U profiles which are later transformed into the final
T shape stringer. HDF can also be used in the manufacturing
of Spar structures, by preforming an initial flat stack of
prepreg onto the Spar mold surface.

2.1 Data Collection

In this study, the collected data samples encompass 14
different components with varying manufacturing methods and
technologies, that aggregate nearly seven-hundred successfully
manufactured parts. Process data for this sample include:

• Cycle time samples, accounting for the time an operator
takes between setup and finish of a single operation.

• Operational inefficiencies or non-conformities, divided
into four different categories: Scrap, Repair, Rework, and
Use as is, in decreasing order of severity.

• Components’ material quantities and materials unit price.
• Acquisition costs of industrial equipment and manufac-

turing tools, such as molds, jigs, and fixtures, etc.

Process data has been directly extracted from the software
database history of the manufacturer, and a summary of
its contents are shown in Table 1. Regarding the collected
samples, outliers resultant from incorrect measurements or
software discrepancies were identified and filtered, based on
empirical knowledge from both engineers and process opera-
tors.

Additionally, part data was also retrieved, taking into ac-
count the geometric characteristics of each component such
as Area, Volume, Perimeter, Length, Width, etc.

Part complexity is known to have a significant impact on
layup technologies efficiency and manufacturability [9], thus a
set of complexity metrics were introduced and extracted from
each part. To determine these complexity metrics, a MATLAB
script was implemented that captures the information from
the component’s 2D sketches from two different views and
assigns a complexity metric for part contour (Cxy), and overall
curvature (Cxz). These metrics are defined using measures
of Lempel-Ziv complexity and its value grows as the length
of the sequence of information and its irregularity increases.
In this case, the variations in angles between the countour
normal and the horizontal reference of neighboring points[10].
In addition to the aforementioned complexities, a third metric
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Table 1. Gathered process data summary table. (Absolute number of non-conformities (†) and parts produced has been omitted to respect confidentiality)

Aircraft Part Description Tag Main Technologies Amount Produced of Total Sample Cycle Time
Data Samples

Non-conformities
Data Samples

A Skin 1 P1 ATL 21.6% 1688 †
A Skin 2 P2 ATL 21.1% 1648 †
A Skin 3 P3 ATL 23.3% 1664 †
A Skin 4 P4 ATL 22.2% 1653 †
B Skin 1 P5 ATL 0.7% 43 †
B Skin 2 P6 ATL 1.2% 52 †
B Spar 1 P7 AFP 3.6% 201 †
B Spar 2 P8 AFP 2.9% 130 †
C Spar 1 P9 ATL+AFP+HDF 1.0% 116 †
C Spar 2 P10 ATL+AFP+HDF 0.7% 100 †
C Skin 1 P11 ATL+HDF 0.4% 108 †
C Skin 2 P12 ATL+HDF 0.4% 78 †
C Skin 3 P13 ATL+AFP+HDF 0.4% 55 †
C Skin 4 P14 ATL+AFP+HDF 0.3% 53 †

Total >680 7589 †

is introduced, taking into account part consolidation, such as
stringers, defined as:

Cint = 1 +Nsp
Asp
App

(1)

where Nsp represents the number of additional secondary parts
to be integrated into the primary part, and Asp and App , the
surface areas of the secondary and primary parts, respectively.

2.2 Modelling Cycle Time as Stochastic Variable

Composite manufacturing processes are highly automated
in critical tasks such as material lay-up and trimming with
computer numerical control (CNC) equipment, but there is
still a significant contribution from manual sources of labour,
as even these machines need some level of human interaction.
While the automated processes themselves perform at repro-
ducible speeds, operators do not, influencing operations cycle
times and consequently final component cost. This assumption
is clearly observed in the collected cycle time samples, which
not only display considerable time variations between different
parts and operations but also among similar parts performing
the same type of operation. Consequently, this variability
between identical parts has clear implications on its final costs,
and reinforces the need to include its effects on the current cost
modelling method.

One such way is by modelling each work center variabilities
accordingly to an appropriate probability distribution. Triangu-
lar distributions were chosen to model these variations, given
the simplicity in its architecture, and affinity for modelling his-
toric data in a manufacturing setting. To build the distribution,
a minimum value (a), a most likely value (c), and maximum
value (b) are necessary. With the current sample size, close to
400 parameters where determined, representing the minimum
and maximum cycle times of each component manufacturing
steps. To minimize bias in the chosen parameters, the decision
making was supported by the empirical knowledge of factory
workers and engineers, for each individual process step and
component. The most likely value is determined based on

the minimum, maximum, and median of each work center
samples, according to (2).

c =

{
b−2(b−m)2

b−a , if m < a+b
2

a+2(a−m)2

b−a , otherwise
(2)

Given all three parameters, it is then possible, through Equa-
tion 3, to compute each work center triangular inverse cumu-
lative distribution function (INVCDF).

F−1(u) =

{
a+

√
(b− a)(c− a), 0 < u < c−a

b−a
b−

√
(b− a)(b− c)(1− u), c−a

b−a < u < 1
(3)

The INVCDF (3) enables the generation of synthetic cy-
cle times within the gathered samples bounds, by randomly
assigning a value u between [0,1], and thus replicate the
historical patterns across the multiple work centers.

However, this process relies on the availability of process
data, and thus, it would not be possible to generate cycle times
for new components, falling outside of the current discrete
points of information. It can be argued that a new component
with a larger surface area should result in increased cycle
times during the ATL layup process - but by how much? The
hypothesis that, depending on the type of operation, there is
one or multiple component properties that clearly influence
cycle times deserves to be investigated.

The challenge lies in identifying the component properties
that hold a stronger relationship with each process step cycle
times. Ultimately, if the hypothesis is validated, it will enable
the estimation of the triangular distribution parameters to
model the new distributions. For that end, regression analysis
was used, allowing for the identification of the geometric
properties that demonstrated stronger statistical correlation
with cycle times. The process of finding the set of component
geometric properties that better describes each work center cy-
cle time is done by generating 100 synthetic cycle times - from
the initially determined distributions - for each component
whose manufacturing tasks are performed in that respective
work center. These generated cycle times form the dependent
variables working set, while the independent variables are
their respective properties namely: component’s surface area
in contact with the mold surface (A), perimeter (P), volume
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(V), and complexity metrics (CXY , CXZ , and CINT ). Surface
area, perimeter, and volume are studied both separately and in
combinations of two, while the different complexities were
paired in combinations with the latter. In total, the search is
performed across 15 different models, for each work center
within the studied industrial environment.

Table 2 summarizes the independent variables found to best
describe the cycle times variations within each work center,
for the current components sample. With this new found
knowledge, a final set of linear regressions were built for each
of the n-th work center, describing its distribution parameters
- minimum (4) , most likely (6), and maximum values (5).

an = αn0 + αn1x
n
1 + αn2x

n
2 (4)

bn = βn0 + βn1 x
n
1 + βn2 x

n
2 (5)

cn = θn0 + θn1 x
n
1 + θn2 x

n
2 (6)

Table 2. Work centers best describing geometric properties and fittings results.
Pc=Pearson-Coefficient

Work Sample Indep. Variables Goodness-of-fit
Center (n) Size xn1 xn2 Pc R2

WC0001 1400 V CX 0.43 0.18
WC0002 1100 A CINT 0.93 0.87
WC0003 600 A CXZ 0.74 0.55
WC0004 400 V CXZ 0.32 0.1
WC0008 900 A V 0.72 0.53
WC0017 1400 A CINT 0.91 0.84
WC0006 900 V CINT 0.52 0.27
WC0009 1400 P CINT 0.83 0.69
WC0016 1400 A CXY 0.88 0.77
WC0018 1400 P CINT 0.9 0.82
WC0019 1400 P CINT 0.83 0.69
WC00QF 1400 P CINT 0.66 0.43
WC01MD 1000 V CXY 0.68 0.46
WC00QA 600 A CXY 0.97 0.94

By doing so, it enables the determination of cycle times
distributions that inherit the process time variabilities, given
the component geometric properties. A benefit of the approach
of fitting the distribution parameters is to estimate the cycle
times variability for new parts avoiding any manual input,
based on human expertise. The approach allows to obtain an
expected distribution of cycle times based only on the parts’
geometric properties and complexity metrics, and on past
variability of similar parts. From the estimated parameters,
the INVCDF can be determined, and cycle times within
a particular work center can be estimated for any desired
component, as represented in Fig. 2.

2.3 Modelling Non-Conformities
As previously mentioned, there are four different types of

non-conformities: Scrap, Repair, Rework, and Use as Is. From
any activity performed across the different manufacturing
steps, there is a chance for any of these to occur; some more
likely than others.

Undoubtedly, non-conformities impact process perfor-
mance, which leads to increased manufacturing costs and
delays. Estimating their occurrences prior to process imple-
mentation would provide valuable insights into its possible
cost impacts.

In probability theory, binomial distributions are categorized
as discrete probability functions of a random variable X ,
and measure the number of successes (k) in a sequence of
n independent experiments [11]. This could translate to the
number of each type of non-conformity (X) to occur, in a
sequence of n production runs (production volume). In short,
binomial distributions can be used to answer the following
question : Given the current efficacy (1 − p) of the activities
completed in this step, how many non-conformities of each
type will there be, for a certain amount of parts being produced
(n)?.

For the intended purposes, the probability of success (p) of
each non-conformity, at any given work center, needs to be
known. These probabilities were determined as the ratios be-
tween the number of each non-conformities occurrences, and
the total number of operations performed at each work center.
Knowing the rate of success of each non-conformity, the
binomial inverse cumulative distribution function (BINVCDF)
can be used (7), enabling the determination of the minimum
number of expected non-conformities to occur (k) of each
type, for a given production volume (n). The confidence level
(u) can be adjusted; Higher confidence levels translate into
more occurrences, which lead to more conservative results.

u ≤
n∑
i=0

n!

i!(n− 1)!
pi(1− p)n−i,

n ∈ N
p ∈ [0,1]
u ∈ [0,1]
i=0,1,2,...,k

(7)

The resulting cost impacts for the number of estimated
occurrences are accounted by the appropriate cost relations
implemented in the cost model, described in the following
sections.

2.4 Modelling Tooling Acquisition Costs and Material
Quantities

Different components have different requirements in terms
of tooling and materials used. So, in order to be able to
estimate their cost, it is necessary to determine which tools
and materials are going to be used and in what quantities.

Thus, following a similar approach as to what was done with
cycle times, the available component’s geometric properties
were correlated with the tooling and materials data, in order
to create regression models able to estimate tooling costs and
materials quantities based on a new part’s geometry.

Due to the heterogeneity between materials in the compo-
nents sample, three different groups were created. Group 2
consists of spar type parts while Group 1 & 3 address similar
types of components: standalone skins and co-cured stringer
reinforced skins, respectively. The latter requires an additional
material to be used that promotes the bonding between the
two surfaces, but also displays different weightings in material
types distribution, hence the separation of the two. For each
material type inside each group, a simple linear regression was
modelled, between the material quantities and the components’
surface area, which demonstrated the best correlation results,
among all the available properties (Table 3).

Tooling cost estimates follow a similar approach, by fit-
ting its acquisition costs with the components’ surface area
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Fig. 2: Manufacturing steps cycle time generation scheme.

Table 3. Material quantities regression coefficients and goodness-of-fit sum-
mary. A=Unidirectional Carbon Fiber Prepreg Tape; B=Carbon Fiber Prepreg;
C=Glass Fiber Prepreg; D= Copper Mesh; E=Epoxy Resin Film

Goodness of fit
Group Material β0 β1 Pc R2 p-value

A -60,78 36,45 0,99 0,98 0,0002
1 B -13,93 3,90 0,99 0,98 0,0001

C 20,18 -1,21 0,91 0,83 0,0112
D 5,66 0,31 0,34 0,11 0,5160

A -8,88 37,54 0,74 0,55 0,0365
2 B 1,16 1,93 0,90 0,82 0,0020

C 1,53 0,41 0,12 0,01 0,7795

A -22,48 24,04 0,99 0,98 0,0001
B -4,62 4,55 1,00 1,00 8,08E-07

3 C 0,29 0,31 0,99 0,98 0,0002
D 0,28 1,27 0,75 0,56 0,0891
E -1,64 1,66 0,86 0,74 0,0288

(Table 4). These are further segmented into two different
categories: Main Mold Cost and Extra Tooling Cost. In some
processes the material is directly laminated onto the mold
surface, thus requiring a single mold; designated as the main
mold. On the other hand, manufacturing processes that require
additional steps, as in the case of spars and skins with co-cured
stringers, usually need extra tools such as jigs and fixtures,
that ensure the correct positioning and alignment between the
two parts prior to curing. In such cases, these extra tooling
costs are determined separately, but later added onto the main
mold costs and comprise the bulk of tooling acquisition costs
associated with the manufacturing process.

Table 4. Tooling acquisition cost regression coefficients and goodness-of-fit
summary

Goodness of fit
β0 β1 Pc R2 p-value

Main Mold 33045 65285 0,963 0,928 2,1E-09
Extra Tooling 84433 29769 0,977 0,955 2,9E-05

The proposed regression offer good references on expected
materials quantities and tooling acquisition costs, for the
purposes of cost estimation. Moreover, it allows for future
estimates to be made regarding new components, whose
geometric properties that fit within the observed properties
bounds.

2.5 The Cost Model

In its simplest form, process-based cost modelling proposes
that manufacturing processes can be modelled as a series of
interdependent steps, where costs are a function of technical
factors, such as materials consumed and cycle time. At the
same time, it incorporates operational inefficiencies that are
detrimental to achieve a production volume on a certain
time horizon, which also increases the amount of resources
required to do so. PBCM’s can also be used as a simulation
tool to evaluate new manufacturing processes, by feeding the
model with the required information, either from literature, or
interpolations from available historical data.

In this study, we follow a similar approach and build upon
a PBCM from a previous work [6]. Most of the cost relations
proposed by the aforementioned work remain the same, albeit
some changes regarding the allocation of equipment (8),
material (11), and scrap costs (12) calculation.

Alloci =
Treqi
Uptimei

(8)

Treqi = CTi ×NPi (9)

Uptimei = Days per year × 24− (Idle

+ Unplanned Breakdowns+ Paid Breaks

+ Unpaid Breaks+On Shift Maintenance)

(10)

Where total time required (Treqi) is the time period nec-
essary to achieve a target production volume (NPi), knowing
each individual part cycle time (CTi), for a specific ith process
step. Machine allocation (Alloci), is determined as the specific
consumption of machine uptime (Uptimei) in process step i,
similarly to activity-based costing (ABC).

Material costs are calculated based on their price per
unit of area (Costsqm i,j) and each respective quantity
(Matquant i,j), for each of the j materials, at each ith process
steps.

Matcost i =

n∑
j=1

Costsqm i,j ×Matquant i,j (11)
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Scrapcost i =

n∑
j=1

(Matquant i,j × ρj)× Costkg i

×NPi × (TechScrap+ scrpi + rwi

× rwscrpi + repi × repscrpi)

(12)

Costs arising from technical inefficiencies along the process
steps (Scrapcost i), are a combination of technical scrap
(TechScrap) originated in both manual and automatic layup
processes, and non-conformities such as scraps (scrpi), re-
works (rwi) and repairs (repi) that may occur throughout
the multiple manufacturing steps. The latter are introduced as
ratios between the number of estimated occurrences, discussed
in subsection 2.3, and the production volume (NPi). rwscrpi
and repscrpi, represent the percentage of parts that fail to meet
quality criteria after being reworked or repaired, respectively,
determined based on the evidence from gathered data.

The cost model is encoded onto a large EXCEL spread-
sheet, where a series of cost relations translate the technical
requirements into manufacturing costs and its sources along
every process step. The cost sources are separated into variable
and fixed costs, each with a set of different cost items.
Variable costs account for Materials, Energy, Labour and
Scrap, whereas fixed costs appraise machine, tooling, building,
and fixed overhead costs.

The developed methods that determine the manufacturing
process data such as, material quantities, tooling investments,
cycle times, and non-quality occurrence are integrated into the
cost model. These intermediate estimates that result from the
methods are fed into each process step cost relations, where
they are translated into their respective cost items, resulting in
the final component cost assessment (Fig. 3).

Fig. 3: PBCM component cost calculation flowchart.

Additionally, because each step cycle time is generated
from an expected distribution, it is possible to perform a
Monte Carlo simulation in order to study the influence of time
variability on manufacturing costs.

By estimating most of the process information from a
limited set of part geometric properties, the model reduces

the amount of inputs that, otherwise, would have to be man-
ually introduced. At the same time it automatically generates
the necessary inputs for the cost estimations, based on past
performance, free from potential biases. Furthermore, given
the simplicity in the required inputs, it is expected that even
at the early stages of design, this information is already fully
available, thus allowing for cost estimation to be made at that
point.

3 RESULTS

The proposed cost model was used to analyse costs for each
of the different components within the studied sample. As a
result of each analysis, a cost distribution is obtained through
a Monte Carlo simulation, making use of the stochastic nature
of cycle times which introduces the manufacturing process
variabilities (Fig. 4a). It is interesting to note that, despite the
cycle times at each work center being modelled according to
a triangular distribution, the component final costs follow a
normal distribution. This is a well-known consequence of the

(a) (b)

Fig. 4: (a) P4 Component Final Costs Histogram of 10,000
simulations. At each run, every manufacturing step cycle time
is picked at random inside its respective time distribution. (b)
Q-Q plot of final component costs sample.

central limit theorem (CLT), stating that when independent
samples from any distribution are added, their sum approx-
imates a normal distribution, even if the original samples
themselves are not normally distributed. This assumption can
be further supported by the Q-Q plots of the output data from
the Monte Carlo simulation (Fig. 4b), where it is possible to
observe that most of the points follow the ideal line of the
normal distribution.

The range of costs resulting from the simulation, con-
sequence of the different processes cycle time variabilities
provides a realistic notion of final cost variability. In this way,
we move away from the more traditional and deterministic
approach to cost estimation, where a single cost is provided
and any cost differences that are likely to occur are neither
contemplated of taken into account in the early project de-
cisions. Despite this fact, when comparing multiple design
iterations, having a single result can be more straightforward.
For that reason, the distribution’s average cost is adopted as
the reference cost metric.

Production volume can also be taken into account on the
analysis, allowing for considerations to be taken regarding
optimal production volumes to be explored, considering the
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Fig. 5: Unit production cost with increasing annual production
volume for component P4. (Cost values have been omitted to
respect confidentiality.)

effects of economy of scale. Typically, with the increase of
production volume, there is a bigger diffusion of fixed costs,
hence the observed reduction in component final costs (Fig. 5).

On the other hand, variable costs do not benefit from the
same effect, as their costs – mostly associated with materials,
labour, and energy – rise proportionally with the increase
of production volume, remaining constant per unit produced.
In this approach, component manufacturing costs are broken

Table 5. Components’ cost sources distribution summary. (Values have been
omitted to respect confidentiality.)

down into its different sources, such as machine, material,
energy etc. (Table 5). This same segmentation is done at a
process step level, enabling a deeper analysis into processes
cost origins and its drivers.

Machine and material costs represent the bulk of costs in
most of the processes. Interestingly, the greater the compo-
nents’ area, the greater its relative material cost contribution
to overall costs.

Regarding the available data set, final component cost
results obtained from the developed model demonstrate a good
agreement with the manufacturer costing values (real costs),
with a mean absolute percentage error (MAPE)=16.4% and
normalized root mean square error (NRMSE)=5.1% (Fig. 6).

Fig. 6: Final model (β-PBCM) results comparison with the
real manufacturing costs.

3.1 Verification

The accuracy of the obtained results is dependent on
two conditions: The ability of the model’s cost relations in
translating process data into costs. And the precision of the
intermediate estimations of cycle times, material quantities
and tooling costs that feed its information to the former. In
this setting, errors in the intermediate quantities estimations
inevitably steer the final cost result — either into a more or less
accurate one — depending on the magnitude of each quantity
individual error. Even if the former does occur, it adds no
additional merit to the model itself.

Fig. 7: PBCM average costs VS. Real Average Costs. α-PBCM
costs are calculated using real process data. β-PBCM costs are
calculated based on process data obtained from the employed
regression methods; εα=Lack of Agreement of between α-
PBCM and real costs; εβ=Lack of Agreement between β-
PBCM and real costs; εαβ= Difference of agreement between
α & β -PBCM results
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Certainly, due to possible intermediate estimation discrep-
ancies between estimated and true cycle times, material quan-
tities, and tooling costs, deviations are expected. Performing
the cost simulations leaving out the estimation of these in-
termediate quantities, but instead, using real data as inputs
(α-PBCM), there is an overall improvement of results -
approximately 9% (Fig. 7). This result demonstrates that the
level of discrepancies of the developed intermediate estimates
is acceptable, encouraging model approval.

One should note that this validation is in its essence a
fitting validation. And in that sense, it can be argued that
the descriptive power of the developed model is validated.
Certainly, this does not guarantee its estimation (predictive)
power. However, as far as new components, whose costs are
to be estimated, are similar enough to the ones used in this
research, it can be expected that the model estimations have
enough merit to be used to support decision making at any
given project stage.

3.2 PBCM as a Decision-Making Tool

Besides being utilized to estimate manufacturing costs,
PBCMs can also be used as a test-bench and enable the
fine-tune of process variables, with the intent to study its
influence in production costs. In doing so, the most econom-
ical manufacturing routes can be determined. However, with
hundreds of different variables, some more controllable than
others, it becomes difficult to target those that may provide
meaningful results or significantly influence manufacturing
costs. With this in mind, the scope of this analyses involves
three different scenarios, where mainly cycle time, materials
costs and material quantities are the main cost items driving
decisions. The scenarios are as follow:
• Scenario A: Considers the drop in the market price

of the materials used, and consequently a component
cost reduction. This reduction in material price can be
linked to future improvements in material manufacturing
processes, which can potentially reduce its costs [12][13].

• Scenario B: Explores possible technological progress on
composite manufacturing technologies, enabling higher
rates of deposition and therefore smaller cycle times
during automatic layup steps [14]. Improvements to layup
times can also be achieved by optimizing the machine
layup paths and reducing unnecessary stoppages [15].

• Scenario C: Takes into account possible reductions to
overall material usage in the manufacturing of the com-
ponent. This could be achieved in two ways: One, where
materials mechanical properties improve overtime, and
the same mechanical integrity can be achieved with fewer
material quantities [16]. Or, by optimizing components
designs, and thus reduce materials usage [17].

Out of the three scenarios results presented in Fig. 8,
Scenario C proves to be the most efficient at reducing cost,
achieving a 1.72% reduction per 5% decrement of its re-
spective quantities. This result is not entirely surprising, as
Scenario C is comparable to a combination of Scenario A and
B with reductions of 1.49% and 0.54%, respectively. Through
these examples, it is clearly shown that material reductions

Fig. 8: Unit production cost reduction according to different
scenarios for component P4. (Cost values have been omitted
to respect confidentiality).

outperform material deposition time reductions, when trying
to reduce production costs. This is also linked to the fact
that material costs represent one of the major contributions to
overall costs, so, logically, any action to reduce its costs would
yield increased gains when compared to other cost drivers.

This same approach can be followed to compare the manu-
facturing costs of using different technologies to manufacture
the same component. Fig. 9, shows an example which explores
the manufacturing costs of a component using ATL or AFP.
Results show some significant differences, which are mostly
attributed to the increased equipment and material cost of AFP,
when compared to ATL. In this particular example, for AFP to
be as economically viable as ATL, a reduction of 26% in both
layup time and material quantities would be required, which
is unlikely to be achieved. Typically, the layup technology is
selected based on component constraints that might prevent
one or the other from being used. However, in cases where
there is freedom of choice, both options should be considered
in order to evaluate its potential costs and determine the most
economically efficient.

Fig. 9: Unit production cost of component P4 using ATL or
AFP as layup technology.*AFP’s layup cycle time and material
quantity reduction to achieve similar cost to ATL. (Cost values
have been omitted to respect confidentiality).

Manufacturers continuously look into its processes, trying
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Table 6. Unit production cost reduction response to each work centers’ maximum and most likely cycle times reduction

Part TAG WC0001 WC0002 WC0003 WC0004 WC0006 WC0008 WC0009 WC0016 WC0017 WC0018 WC0019 WC00QF WC00QA WC01MD

P1 0,4% 1,8% * 0% 0% 0% 1,8% 0,5% 0,7% 0,7% 0,6% 0,3% 0,7% *
P2 0% 1,9% * 0,1% 0,1% 0,1% 1,6% 0,5% 0,4% 0,1% 0,6% 0,2% 0,1% *
P3 0,1% 1,4% * 0,1% 0,1% 0,1% 1,5% 0,8% 0,3% 0,1% 0,6% 0,1% 0,3% *
P4 0% 1,5% * 0,1% 0,1% 0,1% 1,7% 0,5% 0,2% 0,2% 0,6% 0,1% 0,4% *
P5 0% 1,3% * 0,1% 0,1% 0% 0,9% 0,7% 0,2% 0,1% 0,3% 0,1% 0,2% *
P6 0% 1,2% * 0,1% 0,1% 0% 1,2% 0,8% 0,2% 0,1% 0,4% 0% 0,4% *
P7 0% * 4,8% 0% 0% 0% 0,9% 0,7% 0,1% 0% 0,1% 0% * 0,1%
P8 0% * 5,0% 0% 0,1% 0,1% 0,9% 0,8% 0,1% 0% 0,1% 0% * 0,0%
P9 0% 0,2% 1,8% 0,2% 0,1% 0,0% 1,5% 1,9% 0,1% 0,1% 0% 0% * 0,0%
P10 0,1% 0,5% 2,1% 0% 0,1% 0,1% 1,4% 2,0% 0,3% 0% 0% 0,1% * 0,1%
P11 0% 0% * 0,1% 0,1% 0% 3,4% 0,9% 0,1% 0,1% 1,6% 0,3% * 0,1%
P12 0,1% 0% * 0,1% 0,1% 0% 2,9% 0,7% 0,3% 0,2% 1,3% 0,2% * 0,1%
P13 0% 1,8% 0,4% 0% 0,1% 0% 2,0% 0,5% 0% 0,1% 0,4% 0,2% * 0,1%
P14 0,2% * 2,5% 0,1% 0,0% 0% 1,6% 0,6% 0,1% 0,1% 0,7% 0% * 0,2%

Average 0,1% 1,1% 2,8% 0,1% 0,1% 0,0% 1,7% 0,8% 0,2% 0,1% 0,5% 0,1% 0,4% 0,1%

to come up with other solutions that could boost performance
while reducing costs, and thus increase its cost efficiency and
competitiveness. PBCM can be used to great advantage when
trying to achieve such goals. It is possible, to reliably and ef-
fortlessly simulate the reduction of manufacturing steps cycle
time, and record any consequent cost change. In this process,
it becomes more transparent the precise manufacturing steps
where these reductions have a greater effect, and where process
improvement efforts should be channeled, in order to achieve
them.

Table 6 shows the results of reducing each component
manufacturing step distribution’s maximum and most likely
cycle time by 15%, as represented in Fig. 10.

Fig. 10: Triangular Distribution’s Maximum and most likely
cycle times reduction; set to 85% of current values.

In doing so, each process step that contributes the most to
the overall decrease in product cost, due to the reduction of
its operations cycle time is highlighted. The results display
an increased benefit in highly automated steps, where high
equipment investments lead to greater operational costs. Thus,
increases or decreases to cycle times will massively influence
final component costs.

Improving these highly automated steps can be highly re-
warding, but at the same time they can prove to be challenging,
as there is usually very little to change. Contrarily, less critical
and manual tasks, usually performed as intermediate steps of
the manufacturing process, not involving the use of major
equipment, have a very small to gain in reducing its cycle time.
In its essence, the greater the operating costs of the process
step, the more rewarding it can be to reduce final component
costs, owning to improvements that lead to lower cycle times.

This evaluation could be coupled with the information in
Table 5, which enhances the capability of underlining each
process major cost sources.

Similar studies could be conducted in order to understand
how different manufacturing parameters influence compo-
nents’ costs, besides cycle time and material quantities. Being
able to perform these tests, at any given project stage, further
cements the usefulness of having a tool that can accurately rep-
resent cost changes owning to process parameters variations.
Ultimately, the developed model allows for thoughtful and
readily available decisions to be made regarding manufacturing
processes, mindful of their impacts on costs.

4 CONCLUSIONS AND FUTURE WORK

In the current manufacturing paradigm, the control of
manufacturing costs should begin at the product and process
design stages. When manufacturing operations are already
taking place, actions for cost reduction have normally a
narrower impact and/or involve high investments, which are
too expensive [4] [5]. Therefore, engineering costing within
aircraft design, and certainly in many other areas, should
play a more significant role inside the multidisciplinary design
teams, to more effectively balance trade-offs between cost and
performance. This work was set out to develop a tool based on
Process-Based Cost Models (PBCMs) to facilitate and provide
a manufacturing cost assessment, based on a limited amount of
inputs, easily obtained even at the early stages of design. For a
particular industrial environment and aeronautics components
made of composites, this was done taking advantage of a
significant amount of rich historical data to generate techno-
economic regressions that materialize powerful knowledge,
which can then feed the core of the PBCM tool.

Across many different manufacturing industries, process
variability is often encountered, influencing operations cycle
time and therefore the component’s final cost. Trying to
emulate its effects in the developed cost model, the common
deterministic approach to cost modelling was abandoned, and
instead, a stochastic method was introduced. It was shown
that the modelled variabilities can significantly impact the
components’ final cost, and provide a broader view of expected
costs, that may surpass deterministic cost targets. Additionally,
by introducing cost variability into the cost estimation process,
additional awareness is raised on the need for close process
monitoring and allows for the identification of process steps
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whose improvements can deliver positive results in terms of
final cost reduction. Outside of the cost estimation process, the
modelled variabilities can also be used for process planning
purposes. Using part-specific data as the basis for cycle
time determination proved to be efficient in the current cost
estimation scheme, although, in the future, the method could
be further refined in several ways by (1) adding additional part
properties (independent variables) to the time regressions or
(2) adopting non-linear fittings or machine learning methods.
Either in the current of future states, these methods would
benefit from the maturity of some of the current processes,
whose data randomness and uncertainty from the limited num-
ber of production runs hinders the accuracy of the developed
methods.

Non-conformities are estimated based on a method that
assumes that their occurrence is random and independent from
one another. For the intended purposes of cost estimation, this
is an effective and reasonable approach, but these events are
usually dominated by the principle of causality – a cause
that triggers an event. Given the abundance and detail of
the available data, future studies should be performed that
explore the possible cause-and-effect mechanisms in non-
quality occurrences, providing valuable information to its
causes and how to better prevent them, so that its effects are
less noticeable on future costs.

It was also found that tooling costs were surprisingly
well correlated with part surface area, and a simple linear
regression was used to describe its costs based on the parts’
surface area. A similar approach was followed to determine the
manufacturing process material quantities, but the method was
not as suited as it was with tooling costs, given the clustering
of different part types. The heterogeneity between the different
parts, results in different material demands that stem from
the type of component in itself, rather than some quantitative
part property such as its area. For that reason, future methods
should be able to combine qualitative and quantitative data to
distinguish the different types of components and consequently
determine each of its required material quantities.

From the cost analysis of the studied sample, the results
show the bigger the part, the higher the material percentage
cost represents in the total manufacturing costs, followed by
machine costs. In processes involving multiple parts integra-
tions, labour, and tooling costs become more significant, given
the increased manufacturing steps required and additional tools
to ensure the correct alignment of parts.

The results from this study support the initial hypothesis
that manufacturing cost can be automatically estimated based
on simple geometric characteristics available in the very front
end of the design and process planning. It should be noted
however, that the predictive power of the current method
is not fully validated, and further testing with parts outside
of the learning sample would be required. Still, given the
method’s descriptive power, it can be expected acceptable
predictive results on components’ costs, whose properties
are within the bounds of the studied samples. The achieved
estimation errors of the manufacturing costs are substantially
low (MAPE=16.4%;NRMSE=5.1%), and a clear step forward
to support engineering decision making before production

is initiated, or to launch cost reduction initiatives in current
processes. Additionally, with further development, the cost
estimation could be embedded as a CAD tool and become a
design parameter during parts’ design stages. In the future,
the scope of this analysis may be broadened to include
assembly costs and thus enable the economic evaluation of
one of composites main advantages that is part consolidation.
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